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Abstract. For perfectly elastic rubber-like materials, which are capable of undergoing extremely large deforma-
tions, the number of exact solutions remains limited, especially in the context of fully three-dimensional deforma-
tions. Here a simple exact solution describing the finite elastic eversion of a sector of a thick-walled incompressible
spherical shell is determined for the modified Varga elastic material. This new solution, which describes a portion
of a spherical shell being turned inside out, is deduced from a known simplified system and it is shown, by solving
the full equilibrium equations, that no further solutions of this type can be deduced for this particular material.
Further, a general family of response functions is considered, which involves an arbitrary indexn, and which
incorporates standard materials such as the neo-Hookean and Varga strain-energy functions. It is established that
other thann = 1 (namely the Varga material) only the special casen = 2 admits nontrivial solutions to the eversion
problem, but the resulting second-order highly nonlinear ordinary differential equation appears not to admit any
simple analytical solutions. Finally, the new solution is examined as a potential solution of the ‘snap-buckling’
problem of a spherical cap. Unfortunately, the solution appears not to be applicable to this problem and instead it
is presented in the specific context of the eversion of a thick-walled spherical cap, with no applied forces acting
on one of the surfaces of the deformed configuration.
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1. Introduction

For isotropic incompressible perfectly elastic materials, the governing equations for static
finite deformations are highly nonlinear, and, apart from the controllable deformations, there
exist only a limited number of known exact deformations, which apply to various restricted
forms of the strain-energy function. Moreover, the determination of fully three-dimensional
deformations, in contrast to plane strain deformations, presents additional difficulties. A num-
ber of exact axially symmetric and fully three-dimensional deformations are given in Hill
[1, 2] for a neo-Hookean elastic material, while Hill and Arrigo [3] and Arrigo and Hill [4]
present a number of new integrals and new exact solutions for axially symmetric deformations
of the Varga and modified Varga strain-energy functions. The results given in [3, 4] are utilized
in Hill and Arrigo [5] to solve the problem of the stability of a thick-walled spherical shell
which is subjected to external pressure. In this paper we also exploit the results given in [3, 4]
to determine a simple exact deformation applying to the problem of eversion of a thick-walled
spherical cap.

The neo-Hookean and Varga elastic materials have strain-energy functions, respectively,
given by

6 = 1
2µ(λ

2
1+ λ2

2+ λ2
3− 3), 6 = 2µ(λ1+ λ2+ λ3− 3), (1.1)



94 J.M. Hill

whereλi (i = 1,2,3) denote the principal stretches such thatλ1λ2λ3 = 1 and µin both cases
is the usual linear elastic shear modulus. Both strain-energy functions are known to apply
over restricted ranges of deformation, but the neo-Hookean material is generally regarded as
a better model than the Varga material over a variety of deformations. The new exact solution
presented here applies to the so-called modified Varga material, which was first introduced in
[3], and has the strain-energy function

6 = α(λ1+ λ2+ λ3− 3)+ β
(

1

λ1
+ 1

λ2
+ 1

λ3
− 3

)
, (1.2)

whereα andβ are material constants such thatα + β = 2µ. As shown in [5], the additional
material constant greatly improves the range of physical applicability over the single-term
Varga strain-energy function(1.1)2.

The problem of the ‘snap-buckling’ of a portion of a spherical cap is a familiar one and
here we examine the new solution as a potential solution of this problem. The ‘snap-buckling’
problem is particularly interesting, because the body can remain in a deformed state with no
applied forces acting. Even if we replace the requirement of point-wise vanishing of the stress,
by the requirement that the average forces are zero, we are unfortunately, unable to determine
the arbitrary constants in the new solution such that this is the case. Accordingly, we examine
the greatly simplified problem, where only one of spherical surfaces is stress-free. It is at least
clear from this problem, that the case of the two spherical surfaces being stress-free is not
embodied in the new solution.

In this paper we consider a deformation describing a portion of a spherical shell being
turned inside out. Namely, we consider the axially symmetric eversion of a sector of a thick-
walled spherical shell, and in material and spatial spherical polar coordinates(R,2,8) and
(r, θ, φ), respectively, we examine a deformation of the form

r = (−R3+ f (2))1/3, θ = π −2, φ = 8, (1.3)

wheref (2) is a function of2 only. In the following section we show that, although there are
no non-trivial f (2) for the neo-Hookean material, other than the controllable deformation
f (2) = constant, due to the Green and Shield [6], the modified Varga material with strain-
energy function (1.2) admits the simple solution

f (2) = k(cos 22)−3/2, (1.4)

wherek is a constant. This elegant simple result is derived by means of the integrals given
in [3, 4] and one objective of this work is to investigate the extent to which this solution
can be extended. In particular, we investigate if the modified Varga material admits a more
general exact solution perhaps involving further arbitrary constants. We also examine (1.3)
for a family of response functions (see Equation (4.1)) which are characterised by an index
n, which includes the neo-Hookean and Varga materials for the casesn = 0 andn = 1,
respectively. We are able to show that only the casen = 2 gives rise to nontrivialf (2),
except that in this case we are unable to integrate fully the resulting highly nonlinear ordinary
differential equation (see Equations (5.4) and (5.5)).

We emphasise that, in order to obtain tractable equations, we need to make certain as-
sumptions regarding the response coefficientsφ1 andφ2 which are defined by (2.5). The single
assumption (4.1) is the simplest which incorporates the standard materials (1.1) and yet enjoys



Finite elastic eversion of a thick-walled incompressible spherical cap95

certain analytical advantages for this particular problem. However, we note that in general
there appears to be no obvious ‘simple’ properly invariant6(λ1, λ2, λ3) which gives rise to
either of the expressions (4.2). But this does not necessarily mean that such strain-energy
functions do not exist, and we could, if necessary, deduce a properly invariant6(I1, I2) from
(2.5) and (2.8) and using (2.6) to expressI andλ as functions ofI1 andI2, which are defined
by

I1 = λ2
1+ λ2

2+ λ2
3, I2 = 1

λ2
1

+ 1

λ2
2

+ 1

λ2
3

. (1.5)

The resulting expression would, however, involve the roots of a cubic and we do not investigate
such details here.

In the following section we state the basic governing equations for axially symmetric de-
formations of perfectly elastic materials. In addition, we establish there that the neo-Hookean
material does not admit any solutions forf (2) other thanf (2) = constant and we also derive
(1.4) for the modified Varga strain-energy function. In Section 3 we show from the general
equations that (1.4) is the most general solution applying to the modified Varga material. In
Section 4 we suppose that the elastic material has response functionφ1 given by (4.1) and we
show that only the casesn = 1 and n= 2 give rise to nontrivial solutions forf (2) and the
latter case is described separately in the subsequent section. In the final section of the paper
we apply the solution (1.4) to the problem of the eversion of a thick-walled spherical cap and
certain complicated integrals for resultant forces are evaluated in the Appendices.

2. General equations for axially symmetric deformations

For isotropic incompressible hyperelastic materials, the axially symmetric deformation in
spherical polar coordinates,

r = r(R,2), θ = θ(R,2), φ = 8, (2.1)

satisfies the incompressibility condition

rRθ2 − r2θR = R2 sin2

r2 sinθ
, (2.2)

where, as usual, subscripts denote partial derivatives. The equilibrium equations can be shown
to become

pr = φ1

{
∇2r − r

(
θ2
R +

θ2
2

R2

)}
+ φ1RrR + φ12r2

R2
− φ2

r sin2 θ

R2 sin22
,

pθ

r2
= φ1

{
∇2θ + 2

r

(
rRθR + r2θ2

R2

)}
+ φ1RθR + φ12θ2

R2
− φ2

sinθ cosθ

R2 sin22
,

(2.3)

wherep is the pressure function and∇2 is the Laplacian given by

∇2 = ∂2

∂R2
+ 2

R

∂

∂R
+ 1

R2

∂2

∂22
+ cot2

R2

∂

∂2
(2.4)
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and the response functionsφ1 andφ2 are given by

φ1 = 2

{
∂6

∂I1
+ λ2∂6

∂I2

}
, φ2 = 2

{
∂6

∂I1
+
(
I − 1

λ4

)
∂6

∂I2

}
, (2.5)

where6(I1, I2) is the strain-energy function of the material. Further,I1 andI2 are the first
two invariants of the inverse Cauchy deformation tensor which are given by

I1 = I + λ2, I2 = λ2I + 1

λ2
, (2.6)

whereI andλ are defined by

I = r2
R +

r2
2

R2
+ r2

(
θ2
R +

θ2
2

R2

)
, λ = r sinθ

R sin2
, (2.7)

and in terms ofI andλ, the response functionsφ1 andφ2 as given by (2.5) become

φ1 = 2
∂6

∂I
, φ2 = 2

∂6

∂λ2
. (2.8)

We note that for prescribedφ1(I, λ) andφ2(I, λ) we can determine the partial derivatives
∂6/∂I1 and∂6/∂I2 from the relations (2.5) provided the Jacobian of (2.6) is finite.

For the neo-Hookean materialφ1 = φ2 = µ and it is simplest to show directly from (2.3)
that no non-trivial solutions exist forf (2). Assuming (1.3), we have

rR = −
(
R

r

)2

, r2 = f ′

3r2
, (2.9)

where primes here and throughout denote differentation with respect to2, and it is a simple
matter to show that the incompressibility condition (2.2) is satisfied. For the neo-Hookean
material we have from(2.3)2

pθ = −2µ

3

f ′

rR2
= 2µ

3

df

dθ
r(−r3 + f )2/3 ,

which on integration yields

p(r, θ) = 2µ
R

r
+ µF ∗(r), (2.10)

whereF ∗(r) denotes an arbitrary function ofr, which in principle, is determined by substitu-
tion of (2.10) in the first equilibrium equation (2.3)1, thus

r2(−r3 + f )2/3dF ∗

dr
(r) = 1

3{f ′′ + cot2f ′ + 6f } − 2

r3

(
f 2+ f

′2

9

)
. (2.11)

Only in the casef (2) = constant does (2.11) reduce to a well-defined equation for the
determination ofF ∗(r).
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In [3, 4, 5] it is shown that the integral

(RrR + rθ2) sin(θ −2)+ (rRθR − r2) cos(θ −2) = 0, (2.12)

together with (2.2), constitutes a second-order system of equations, every solution(r, θ) of
which is a bona-fide solution of the fourth-order system defined by (2.2) and (2.3) for the
modified Varga elastic material which has a strain-energy function defined by (1.2). Moreover,
any solution of (2.2) and (2.12) has a pressure function given explicitly by

p = −(φ1+ β)
λ

+ p0, (2.13)

wherep0 is a constant andφ1 andλ are as defined above. From (1.3) and (2.12) it is a simple
matter to deduce

f ′ = 3f tan 22, (2.14)

from which we may readily obtain the exact solution (1.4). In the following section we show
directly from (2.3) that this is the only nonconstant solution applying to the modified Varga
material.

3. Modified Varga strain-energy function

Given the derivation of (1.4) from the integral (2.12), it is natural to ask whether the full
equilibrium equations for the modified Varga elastic material admit a more generalf (2). We
are able to demonstrate that this in fact is not the case and that there exist only two solutions,
namely (1.4) andf (2) = constant. From (1.3) and (2.7) we can deduce

I = −2

λ
+ A(2)
r4R2

, λ = r

R
, (3.1)

where the functionA(2) is defined by

A(2) = f 2+ f
′2

9
. (3.2)

Now from the relationsI = λ2
1+ λ2

2, λ3 = λ, we find that (1.2) becomes

6 = α
((
I + 2

λ

)1/2

+ λ− 3

)
+ β

(
λ

(
I + 2

λ

)1/2

+ 1

λ
− 3

)
, (3.3)

and therefore from (2.8) we find that the response functionsφ1 andφ2 are given by

φ1 = (α + βλ)
(I + 2

λ
)1/2

, φ2 = −φ1

λ3
+ α
λ
+ β
λ

(
I + 2

λ

)1/2

− β

λ3
. (3.4)

On introducingB(2) = A(2)−1/2 we may deduce from the above relations(
I + 2

λ

)1/2

= 1

B(2)r2R
, φ1 = B(2)r2(αR + βr). (3.5)
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From (1.3) and using the above expressions for the response functionsφ1 and φ2 in the
equilibrium equations (2.3) and the relations

pR = −pr
(
R

r

)2

, p2 = −pθ + pr f
′

3r2
, (3.6)

we can after an extremely tedious calculation show that the equilibrium equations reduce to

qR = −(αR + βr)F (2)
r2

,

q2 = (αR + βr)f
′F(2)

3r2R2
+ (αR + βr)rG(2)

R2
+ βH(2),

(3.7)

whereF(2),G(2) andH(2) are defined by

F(2) = (Bf ′)
3

′
+ cot2

Bf ′

3
− 3Bf − 1,

G(2) = (Bf )′ + cot2Bf + Bf ′ − cot2,

H(2) = f ′

3
+ cot2f − cot2

B
,

(3.8)

and, where motivated by (2.13), we have introducedq defined by

q = p + (φ1+ β)
λ

. (3.9)

From (1.4) and (3.8), it is a simple matter to show that F, G and H are identically zero, which
confirms (2.13). The question is, however, whether (3.7) admits a more generalf (2). On
equating expressions forqR2 we may deduce from (3.7)

(αR + βr)F ′ = (αR + 2βr)

R3

(
Ff ′

3
+Gf

)
, (3.10)

which holds only if

F ′ = 0,
Ff ′

3
+Gf = 0. (3.11)

Now from the definition ofB(2) we have

B2 =
(
f 2+ f

′2

9

)−1

, (3.12)

and therefore

B

(
f 2+ f

′2

9

)
= 1

B
. (3.13)
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On expanding the left-hand side of (3.14) and using (3.13) it is not difficult for us to show
from (3.8) that the following identity holds

Ff ′

3
+Gf = −H, (3.14)

and therefore we requireF ′ = 0 andH = 0. From these two conditions we may deduce

(Bf ′)′

3
+ Bf

′

3
cot2− 3Bf = γ, Bf ′

3
= cot2− Bf cot2, (3.15)

whereγ is an arbitrary constant. By eliminatingBf ′ from these equations we obtain the linear
first-order ordinary differential equation forBf , thus

cot2(Bf )′ + 2(Bf ) = −(γ + 1). (3.16)

On integration and redesignating the two arbitrary constants toC1 andC2, we may eventually
deduce

Bf = C1 cos 22+ C2,
Bf ′

3
= − cot2(C1 cos 22+ C2− 1), (3.17)

which by squaring and adding using (3.12) simplifies to give

(C1x + C2− 1)(C1x + C2− x) = 0, (3.18)

wherex here denotes cos 22. Clearly, there are only two possibilities, namely eitherC1 = 0
andC2 = 1 which corresponds tof (2) = constant, orC1 = 1 and C2 = 0 which corresponds
to (1.4). Thus, at least for the modified Varga material, we have established that there are no
more general solutions for the deformation (1.3) other than (1.4) andf (2) = constant. In the
following section we attempt to find further materials which admit nontrivial deformations of
the form (1.3) by prescribing the form of the first response coefficientφ1.

4. Elastic material with response function characterised by an indexn

In this section we suppose that the first response functionφ1 is given by

φ1 = 2nµ

(I + 2
λ
)n/2

, (4.1)

where the normalising constant is determined by the conditionφ1 tends toµ as I tends to
two andλ tends to unity. The form of this expression is motivated by the fact thatI + 2/λ
has an ‘almost’ separable structure and thereforeφ1 also enjoys this feature. In addition (4.1)
includes both the neo-Hookean and Varga elastic materials forn = 0 andn = 1, respectively.
From (2.8)1 and (4.1) we may deduce

6(I, λ) = 2nµ

(2− n)
(
I + 2

λ

)1−n/2
+60(λ), n 6= 2,

6(I, λ) = 2µ log

(
I + 2

λ

)
+60(λ), n = 2,

(4.2)



100 J.M. Hill

where in both cases60(λ) denotes an arbitrary function ofλ. We note that it is not immediately
clear from (4.2) as to the precise form of a properly invariant ‘simple’ strain-energy function
6(λ1, λ2, λ3), which could give rise to such expressions. However, this does not necessarily
imply that such a6(λ1, λ2, λ3) does not exist and as noted in the introduction, we could
if necessary deduce such a6(I1, I2) from (2.5) and (2.8) and using the relations (2.6) and
(1.5), but the result would be complicated and involve the roots of a cubic. For our purposes
Equation (4.1) is a simple assumption, which enjoys certain analytical advantages, and which
encompasses two standard materials. From (2.8)2 and (4.2) we may deduce

φ2 = −φ1

λ3
+ σ (λ), (4.3)

whereσ (λ) = 2∂60/∂λ
2 and which for the time being we leave arbitrary. Now, on introducing

B(2) defined by

B(2) = A(2)−n/2, (4.4)

which coincides with that used in the previous section withn = 1, we may deduce from (3.1)1

and (4.1)

φ1 = 2nµ B(2) r2nRn. (4.5)

From (1.3), (4.3) and (4.5) the equilibrium equations (2.3) eventually simplify to give

QR = −r2n−4RnC(2)− 2(n− 1)r2n−7RnB(2)1−2/n + σ̄ (λ)
r
,

Q2 = r2n−4Rn−2f
′

3
C(2)+ r2n−1Rn−2D(2)

+2

3
(n− 1)r2n−7Rn−2f ′B(2)1−2/n − λ2σ̄ (λ)

(
f ′

3r3
+ cot2

)
,

(4.6)

where the functionsC(2) and D(2) are defined by

C(2) = (Bf ′)′

3
+ cot2

Bf ′

3
− 3nBf,

D(2) = (Bf )′ + cot2Bf + nBf ′,
(4.7)

and we have introducedQ andσ̄ (λ) such that

Q = 1

2nµ

(
p + φ1

λ

)
, σ̄ (λ) = σ (λ)

2nµ
. (4.8)

We comment that in the derivation of (4.6) we have made use of Equation (3.6) and we
exclude the casen = 0 from the discussion. We also note that from (3.2), (4.4) and the
definition (4.7) ofC(2) andD(2) we can establish the important identity

C
f ′

3
+Df = B−2/n

{(
1− 1

n

)
B ′ + cot2B

}
. (4.9)
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On equating expressions forQR2 we may eventually deduce

r2n−4

{
RnC ′ + (n− 2)Rn−3Cf

′

3

}
+ 2(n− 1)(n− 2)r2n−7

{
Rn
B−2/n

n
B ′

+Rn−3B1−2/n f
′

3

}
+ {(n− 2)r2n−1Rn−3− (2n− 1)r2n−4Rn}D

+ 1

r2R2

{
f ′

3
+ f cot2

}
d

dλ
(λ2σ̄ (λ)) = 0. (4.10)

Clearly,n = 1 andn = 2 constitute special cases and the casen = 2 is considered in detail in
the following section. Forn = 1 we have for the Varga elastic material

60(λ) = 2µ(λ− 3), σ (λ) = 2µ

λ
, σ̄ (λ) = 1

λ
, (4.11)

and Equation (4.10) yields simply

R3C ′ + f
′

3
+ f cot2 = cot2

B
, (4.12)

where we have utilised the identity (4.9) forn = 1. Equation (4.12) is in complete accord
with the results given in the previous section, namelyF ′ = 0 andH = 0, whereF andH are
defined by (3.8). In the remainder of this section we assumen 6= 1,2.

Now on dividing (4.10) byr2n−7Rn−3, we can group the terms not involvingσ̄ (λ) asR6, R3

or R0, while the σ̄ (λ) term behaves liker5−2n/Rn−1 which we can balance with the three
groupings in any of the following ways:

r6 r
−1−2n

Rn−1
, r3 r

2−2n

Rn−1
, R6r

5−2n

R5+n , R3r
5−2n

R2+n ,
r5−2n

Rn−1
,

which give rise to a multiple ofλ only in the three special casesn = 0,1 and 2, which are all
excluded from the discussion. Accordingly, forn 6= 0,1,2 we need to assume that the term
involving σ̄ (λ) does not arise in Equation (4.10). This can be achieved either if

f ′

3
+ f cot2 = 0, (4.13)

or if σ̄ (λ) = σo/λ2, whereσ0 is a constant. Assuming that one of these apply, we may readily
deduce the following equations from the terms involvingR6, R3 andR0, thus

C ′ = 3(n− 1)D,

C
f ′

3
+Df = 2(n− 1)

B−2/n

n
B ′,

f

{
Cf ′

3
+Df

}
= −2(n − 1)B1−2/n f

′

3
,

(4.14)

and the latter two equations are only consistent if

fB ′

n
= −Bf

′

3
, (4.15)
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which integrates to giveBf n/3 = constant. Now on comparison of (4.9) and (4.14)2 we obtain
an equation which can be readily integrated to yield

B(2) = B0(sin2)n/(n−1), (4.16)

whereB0 denotes an arbitrary constant. Thus, from the previous integral we have

f (2) = f0(sin2)−3/(n−1), (4.17)

wheref0 denotes an additional constant. We observe that this expression coincides with the
solution of (4.13) only ifn = 2, so that for other values ofn we must havēσ (λ) = σ0/λ

2.

However, from the definition ofB(2) (namely Equations (3.2) and (4.4)) it is straightforward
to deduce that there are no values onn for which (4.16) and (4.17) are compatible, not even
n = 2 which excludes the option (4.13). Accordingly, for generaln there are no values giving
rise to non-trivialf (2). In the following section we present a detailed analysis of the special
casen = 2.

5. Results for the special case ofn=2

In this section we show that a non-trivial solution forf (2) exists for the special casen = 2,
but we are not able to integrate fully the governing highly nonlinear ordinary differential
equation. We need to assume that theσ̄ (λ) term does not arise in the Equations (4.6) and
(4.10). This is the case either if60(λ) is a constant or if it is a constant times logλ. In either
case (4.10) becomes simplyC ′ = 3D while (4.6) and (4.9) yield, respectively,

QR = −R2C − 2R2

r3
, Q2 = Cf

′

3
+Dr3+ 2

3

f ′

r3
,

C
f ′

3
+Df = cot2+ B ′

2B
, (5.1)

from which Q may be readily integrated to give

Q(R,2) = −R
3C

3
+ log

(
r2 sin2B(2)1/2

)
+Q0, (5.2)

whereQ0 denotes an arbitrary constant. Now fromC ′ = 3D and (5.1)3 we can, by integration,
obtain

Cf = 3 log(sin2B(2)1/2)+ C1, (5.3)

whereC1 denotes the constant of integration. Thus, from (4.7)1 and (5.3) we may deduce the
highly nonlinear ordinary differential equation forf (2), namely

f

{
(Bf ′)′

3
+ cot2

Bf ′

3
− 6Bf

}
= 3 log(sin2B1/2)+ C1, (5.4)

where in this caseB(2) as a function off andf ′ is defined by

B(2) = 1

(f 2+ f ′2/9) . (5.5)
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Equations (5.4) and (5.5) constitute a well-defined second-order ordinary differential equation
for the determination off (2). At least in principle, for this particular response function, we
know there exists nontrivialf (2), perhaps involving three arbitrary constants. We can achieve
some minor simplification of (5.4) and (5.5) by introducingρ such that

f = cosρ

B1/2
,

f ′

3
= sinρ

B1/2
, (5.6)

in which case we have

B ′

2B
= −(ρ ′ + 3) tanρ, (5.7)

while (5.4) becomes

(sin2 sin 2ρ)′ = 3 sin2 cos 2ρ + 6 sin2 log(sin2B1/2)+ (2C1+ 9) sin2. (5.8)

However, such transformations appear not to be effective in terms of producing simple ana-
lytical solutions and further results can only be obtained numerically.

6. Application to the eversion of a spherical cap

The controllable deformation involved in turning a spherical shell inside out and due originally
to Green and Shield [6] is given by

r = (−R3+K)1/3, θ = π −2, φ = 8, (6.1)

whereK is a constant. Namely, this deformation describes the eversion problem for a complete
thick-walled spherical shell, which is everted by means of a cut. For other contributions to this
problem, we refer the reader to Eringen [8, pp. 182–185]. For a portion of a spherical shell,
a deformation of the form (1.3) is more likely to apply and the question arises as to whether
we might utilise (1.4), for example, to describe the ‘snap-buckling’ of a spherical cap which
is a familiar physical effect. For the majority of exact deformations which apply to particular
finite elastic materials, it is not usually possible to satisfy stress boundary conditions in a point
wise sense, and at best only approximate or ‘averaged’ stress conditions on the boundary can
be satisfied. In many instances such solutions lead to useful practical load-deflection relations
(see for example Klingbeil and Shield [9] and Hill and Lee [10]). We comment that in this
section we have retained the usual convention in finite elasticity of using the capital lettersA

andB to designate the inner and outer radii. There should be no confusion with the previously
introduced functionsA(2) andB(2) which are not required in this section.

From Appendix A and Equation (A12) we have that the resultant forceF ∗ acting in the
z-direction, for the deformation given by (1.3) and (1.4), on a spherical cap of radiusR and
subtended by an angle20 is given by the expression

F ∗ = πR2 sin220
{
α + 2βλ− p0λ

2} , (6.2)

whereλ is defined by (3.1)2 thus

λ = r

R
=
(

1

ξ3
0

− 1

)1/3

, (6.3)
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Figure 1. Variation ofF/παA2 with k∗ = k/A3 as given by (6.8) and (6.9) for20 = π/6 andB/A = 6/5.

whereξ0 is as defined in Appendix A, namely, Equation (A10)1. We observe thatα andβ in
(6.2) are the material constants arising in the modified Varga strain-energy function (1.2), and
the limited experimental investigation given in [5] indicates that bothα andβ are positive and
thatβ/α is approximately 1/15. We also note that the resultant forceF ∗ is quadratic in the
principal stretchλ. Assuming for the time being that we may neglect the flat surface2 = 20

of the spherical cap which we take to be defined by

{(R,2,8) : A 6 R 6 B;06 2 6 20;06 8 6 2π},

whereA andB here denote the inner and outer radii respectively, we can in principle determ-
ine the remaining unknown constantsk andp0 such that the conditionF ∗ vanishing on the
inner and outer spherical surfaces is satisfied, which would produce an approximate solution
to the snap-buckling problem. This implies that the values ofλ at the inner and outer surfaces,
namelyλA andλB are determined as roots of the quadratic equation

p0λ
2− 2βλ− α = 0, (6.4)

thus

λA = β + (β2 + αp0)
1/2

p0
, λB = β − (β2 + αp0)

1/2

p0
, (6.5)

and therefore

λA + λB = 2β

p0
, λAλB = − α

p0
. (6.6)

It is clear that for positiveα, β, λA andλB these conditions are not compatible and therefore
at least for this particular material, the phenomena of snap buckling of a spherical cap is not
embodied in the deformation given by (1.3) and (1.4).
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Figure 2. Variation ofF/παA2 with k∗ = k/A3 as given by (6.8) and (6.9) for20 = π/6 andB/A = 3/2.

Figure 3. Actual deformation of the outer surface forB/A = 3/2 and k∗ = 8.

Alternatively, we can suppose that the resultant forceF ∗ vanishes on one of the spherical
surfaces and is prescribed on the other, thus

F ∗(A) = 0, F ∗(B) = F, (6.7)

in which case we may deduce

F = πB2

λ2
A

sin220(λA − λB){α(λA + λB)+ 2βλAλB}, (6.8)

noting thatλA > λB sinceλ(R) is monotonically decreasing. Figures 1 and 2 show the
variation ofF/παA2 with k∗ = k/A3 for20 = π/6 and for two values ofB/A and assuming
thatβ/α = 1/15. It is clear from these figures that, as noted previously,F can never be zero
and that for any givenF there are two possible values ofk. Further, in this contextλA andλB
are given by

λA = (k∗(cos 220)
−3/2− 1)1/3, λB =

(
k∗(cos 220)

−3/2

δ3
− 1

)1/3

, (6.9)

whereδ denotesB/A and the actual deformation of the outer surface is shown in Figure 3 for
the caseB/A = 3/2 andk∗ = 8.

We note that from Equation (B7) of Appendix B, as expected, the resultant forceG acting
in the conventional z-direction on the slanting surface given originally by2 = 20 becomes,

G∗ = −π sin220{B2(α + 2βλB − p0λ
2
B)− A2(α + 2βλA − p0λ

2
A)}, (6.10)
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and therefore in this instanceG∗ = −F whereF is given by (6.8). This, of course, is necessary
in order that there are no net forces acting on the cap.

7. Concluding remarks

For the perfectly elastic incompressible modified Varga material, we have determined a new
simple exact solution which corresponds to the eversion of a portion of a thick-walled spher-
ical shell. We have demonstrated that for this particular strain-energy function, there does not
exist a more general solution of this type. We have also investigated such deformations for
a family of response functions which are characterised by an indexn, and we have shown
that other than the Varga material, only that forn = 2 admits a nontrivial deformation of
the type examined here. We have attempted to utilize the new solution to solve the familiar
problem of the snap-buckling of a portion of a spherical shell, but unfortunately our solution is
not sufficiently general to accommodate the necessary stress boundary conditions, even when
these are replaced by average force requirements. Instead we have used the solution for the
problem of the eversion of a spherical shell, under no applied forces acting on one of the
spherical surfaces.

Appendix A. Calculation for resultant force on the spherical surface of a cap

As described in Hill [7], the resultant forceF ∗ acting in the conventionalz-direction on
a spherical cap of original radiusR and subtended by an angle20, may be shown to be
determined by the expression

F ∗ = 2π
∫ 20

0
[−pr sinθ(r sinθ)2 + R2 sin2φ1(r cosθ)R]d2, (A1)

wherep is the pressure function arising in the equilibrium equations (2.3) andφ1 is the first
response function defined by (2.5)1. Now for the axially symmetric deformation (1.3) for the
modified Varga material,f (2) is given by (1.4), while the pressure functionp is determined
from (2.13) and we find that (A1) becomes

F ∗ = 2π
∫ 20

0

{[
−p0+ (φ1+ β)

λ

]
r(r sin2)2 + φ1

R4

r2
cos2

}
sin2d2. (A2)

We choose to express this integral in the following manner,

F ∗ = F ∗1 + F ∗2 + F ∗3 , (A3)

whereF ∗1 , F
∗
2 andF ∗3 , are taken to be

F ∗1 = −2πp0

∫ 20

0
r sin2(r sin2)2 d2 = −πp0(−R3+ f (20))

2/3 sin220,

F ∗2 = 2πR
∫ 20

0

φ1

r2
{(−R3+ f ) cos2+ f sin2 tan 22+ R3 cos2} sin2d2,

F ∗3 = 2πβR
∫ 20

0

1

r2
{(−R3+ f ) cos2+ f sin2 tan 22} sin2d2,

(A4)
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where we have utlilised (2.14). NowF ∗1 is trivial and has been evaluated immediately, while
F ∗2 can be shown to become

F ∗2 = πR
∫ 20

0

φ1

r2
f tan 22d2,

which on use of (3.5)2 gives simply

F ∗2 = πR
∫ 20

0
(αR + βr) sin 22d2, (A5)

where we have usedB(2) = k−1(cos 22)5/2. Part of(A5) integrates immediately, while for
the remainder we make the substitutionu = cos 22 to obtain

F ∗2 = παR2 sin220+ πβR2
∫ 1

u0

(−R3+ ku−3/2)1/3 du, (A6)

whereu0 denotes cos 220. NowF ∗3 simplifies to give

F ∗3 = πβR
∫ 20

0

{
−R3+ f

cos 22

}
sin 22

r2
d2,

which becomes

F ∗3 = −
πβR4

2

∫ 1

u0

du

(−R3+ ku−3/2)2/3
+ πβR

2

∫ 1

u0

ku−5/2 du

(−R3+ ku−3/2)2/3
,

and on making the substitutionv = ku−3/2 in the second integral, we can perform the
integration to yield

F ∗3 = πβR{(−R3+ f (20))
1/3− (−R3+ k)1/3}

−πβR
4

2

∫ 1

u0

du

(−R3+ ku−3/2)2/3
. (A7)

Thus altogether we find thatF ∗ becomes

F ∗

π
= −p0r

2
0 sin220+ αR2 sin220+ βRr0− βR(−R3+ k)1/3

−βR4
∫ 1

u0

du

(−R3+ ku−3/2)2/3
+ βR

2

∫ 1

u0

ku−3/2du

(−R3+ ku−3/2)2/3
, (A8)

wherer0 denotes(−R3 + f (20))
1/3. On making the substitutionξ = Ru1/2/k1/3 we may

eventually deduce

F ∗

π
= −p0r

2
0 sin220+ αR2 sin220+ βRr0− βR(−R3+ k)1/3

+βk2/3
∫ R/k1/3

ξ0

(1− 2ξ3)dξ

(1− ξ3)2/3
, (A9)
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whereξ0 denotesRu1/2
0 /k1/3, namelyR(cos 220)

1/2/k1/3. Thus with the notation

ξ0 = Ru1/2
0 /k1/3, ξ1 = R/k1/3, (A10)

Equation (A9) simplifies to yield

F ∗

πR2
= (1− u0)

2

{
α − p0

ξ2
0

(1− ξ3
0 )

2/3

}
+ β

{
(1− ξ3

0)
1/3

ξ0
− (1− ξ

3
1 )

1/3

ξ1

}

+ β
ξ2

1

∫ ξ1

ξ0

(1− 2ξ3)dξ

(1− ξ3)2/3
. (A11)

For the integral in (A11) we have∫ ξ1

ξ0

{
(1− ξ3)1/3− ξ3

(1− ξ3)2/3

}
dξ =

∫ ξ1

ξ0

d

dξ
{ξ(1− ξ3)1/3}dξ,

which on integration, yields altogether

F ∗

πR2
= (1− u0)

{
α

2
+ β (1− ξ

3
0 )

1/3

ξ0
− p0

(1− ξ3
0 )

2/3

2ξ2
0

}
, (A12)

and this is the required expression for the resultant forceF ∗ acting in thez-direction on a
spherical cap of radiusR and subtended by an angle20.

Appendix B. Calculation for resultant force on the slanting surface of a cap

The resultant forceG∗ acting in the conventionalz-direction on the slanting surface of a
spherical cap, which is subtended by an angle2, is calculated as follows. In terms of the
Cauchy stress vectortj and the first Piola–Kirchoff stress vectortjR we have

dG∗ = (t1 cosθ − rt2 sinθ
)

da = (t1R cosθ − rt2R sinθ)dA, (B1)

where dA and da represent elementary undeformed and deformed areas and in particular dA

is given by

dA = R sin2dR d8. (B2)

Now the slanting surface subtended by an angle2 has normal vectornR = (0, R,0) and in
terms of the Cauchy stress tensort ij and the first Piola–Kirchoff stress tensortKjR we have

t
j

R = tKjR nRK = XK
,i t

ij nRK, (B3)

so that on making use of

2r = − r2 sinθ

R2 sin2
θR, 2θ = r2 sinθ

R2 sin2
rR, (B4)
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and the expressions given in Hill [7] for the Cauchy stress tensor, we may deduce from the
above equations

G∗ = 2π
∫ B

A

[pr sinθ(r sinθ)R + sin2φ1(r cosθ)2]dR, (B5)

noting that the8 integration can be performed directly.
In particular, for the deformation given by (1.3) and (1.4) for the modified Varga material,

the pressure functionp is given by (2.13) whereφ1 is determined from(3.5)2 and from (B5)
we may obtain

G∗ = −2π sin22

∫ B

A

[
αR + β(rR)R + p0

R2

r

]
dR, (B6)

which can be readily integrated to yield

G∗ = −π sin22{α(B2− A2)+ 2β(BrB − ArA)− p0(r
2
B − r2

A)}, (B7)

whererA andrB denote the values ofr evaluated atR = A andR = B, respectively. From
this equation, for2 = 20, we can readily deduce (6.10) whereλA andλB are defined by
(6.9).
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